Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Chem Inf Model ; 61(9): 4224-4235, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1356531

ABSTRACT

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Humans , Machine Learning , Molecular Docking Simulation
2.
ACS Omega ; 6(11): 7454-7468, 2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1155692

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.

3.
Pharm Res ; 37(4): 71, 2020 Mar 25.
Article in English | MEDLINE | ID: covidwho-18423

ABSTRACT

For the last 50 years we have known of a broad-spectrum agent tilorone dihydrochloride (Tilorone). This is a small-molecule orally bioavailable drug that was originally discovered in the USA and is currently used clinically as an antiviral in Russia and the Ukraine. Over the years there have been numerous clinical and non-clinical reports of its broad spectrum of antiviral activity. More recently we have identified additional promising antiviral activities against Middle East Respiratory Syndrome, Chikungunya, Ebola and Marburg which highlights that this old drug may have other uses against new viruses. This may in turn inform the types of drugs that we need for virus outbreaks such as for the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Tilorone has been long neglected by the west in many respects but it deserves further reassessment in light of current and future needs for broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Tilorone/pharmacology , Animals , COVID-19 , Chikungunya virus/drug effects , Coronavirus Infections/drug therapy , Ebolavirus/drug effects , Humans , Marburgvirus/drug effects , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , COVID-19 Drug Treatment
4.
Antimicrob Agents Chemother ; 64(5)2020 04 21.
Article in English | MEDLINE | ID: covidwho-13986

ABSTRACT

Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV).


Subject(s)
Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Communicable Diseases, Emerging/drug therapy , Coronavirus/drug effects , Ebolavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/drug effects , Tilorone/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL